Automatic voice onset time estimation from reassignment spectra

نویسندگان

  • Veronique Stouten
  • Hugo Van hamme
چکیده

We describe an algorithm to automatically estimate the voice onset time (VOT) of plosives. The VOT is the time delay between the burst onset and the start of periodicity when it is followed by a voiced sound. Since the VOT is affected by factors like place of articulation and voicing it can be used for inference of these factors. The algorithm uses the reassignment spectrum of the speech signal, a high resolution time-frequency representation which simplifies the detection of the acoustic events in a plosive. The performance of our algorithm is evaluated on a subset of the TIMIT database by comparison with manual VOT measurements. On average, the difference is smaller than 10 ms for 76.1% and smaller than 20 ms for 91.4% of the plosive segments. We also provide analysis statistics of the VOT of /b/, /d/, /g/, /p/, /t/ and /k/ and experimentally verify some sources of variability. Finally, to illustrate possible applications, we integrate the automatic VOT estimates as an additional feature in an HMM-based speech recognition system and show a small but statistically significant improvement in phone recognition rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic estimation of voice onset time for word-initial stops by applying random forest to onset detection.

The voice onset time (VOT) of a stop consonant is the interval between its burst onset and voicing onset. Among a variety of research topics on VOT, one that has been studied for years is how VOTs are efficiently measured. Manual annotation is a feasible way, but it becomes a time-consuming task when the corpus size is large. This paper proposes an automatic VOT estimation method based on an on...

متن کامل

Estimation of voice-onset time in continuous speech using temporal measures.

This paper proposes an automatic acoustic-phonetic method for estimating voice-onset time of stops. This method requires neither transcription of the utterance nor training of a classifier. It makes use of the plosion index for the automatic detection of burst onsets of stops. Having detected the burst onset, the onset of the voicing following the burst is detected using the epochal information...

متن کامل

Measurement of Voice Onset Time in Maxillectomy Patients

Objective speech evaluation using acoustic measurement is needed for the proper rehabilitation of maxillectomy patients. For digital evaluation of consonants, measurement of voice onset time is one option. However, voice onset time has not been measured in maxillectomy patients as their consonant sound spectra exhibit unique characteristics that make the measurement of voice onset time challeng...

متن کامل

Robust Singing Transcription System Using Local Homogeneity in the Harmonic Structure

Automatic music transcription from audio has long been one of the most intriguing problems and a challenge in the field of music information retrieval, because it requires a series of low-level tasks such as onset/offset detection and F0 estimation, followed by high-level post-processing for symbolic representation. In this paper, a comprehensive transcription system for monophonic singing voic...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Speech Communication

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2009